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Synthesis of �-methyl-�-alanine-L-proline-XAA tripeptides by
Yb(OTf)3 catalysed Michael addition of amines to
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Abstract—N-Crotonyl-L-proline derived peptides can be transformed to the corresponding �-methyl-�-alanine-L-proline peptides
by Yb(OTf)3 catalysed Michael addition of aliphatic amines to the crotonyl residue. The Michael adducts derived from addition
of allylamine are versatile precursors to the corresponding cyclic peptides obtainable via ring closing metathesis. © 2002 Elsevier
Science Ltd. All rights reserved.

Peptides derived from �-amino acids are resistant to
proteolytic degradation and therefore of considerable
importance in medicinal chemistry.1 A peptide bond
derived from �- and �-amino acids also leads to
molecules with interesting conformational properties.2

In an ongoing project in our laboratory,3 we required
peptides consisting of a �-amino acid and L-proline to
probe their proteolytic stabilities towards aspartyl
proteases.4 In order to develop a synthetic methodology
for a dipeptide, derived from �-methyl-�-alanine-L-pro-
line we used N-crotonoyl-L-proline as a precursor for
their synthesis. This communication describes our pre-
liminary results on Yb(OTf)3 catalysed synthesis of
�-methyl-�-alanine-L-proline containing dipeptides.

Yb(OTf)3 is known to catalyse the Michael addition of
amines to crotonate esters.5 In order to probe the
synthetic scope of this reaction, we explored the
Michael addition of different alkyl amines to N-cro-
tonoyl-L-proline6 methyl ester under Yb(OTf)3 cataly-
sis. Accordingly, allylamine, benzylamine and
3-bromobenzylamine were subjected to Michael addi-
tion with N-crotonoyl-L-proline methyl ester 1 in the
presence of catalytic (10 mol%) Yb(OTf)3 leading to the
formation of �-methyl-�-alanine-L-proline containing
amides 2 (Scheme 1).7 As is evident from the results in

Scheme 1, amide 1 underwent smooth Michael addition
in high yields (70–75%) to the corresponding amide 2,
however, the reaction was not diastereoselective as mix-
tures of both isomers were obtained in equal propor-
tion. In order to improve the diastereoselectivity during
the Michael addition, we carried out additions using
the corresponding N-crotonoyl-L-proline dipeptides 3
(Scheme 2), reasoning that these may preorganise via a
�-turn leading to a less flexible structure which will
result in a facial bias for Michael addition. An 1H
NMR study of peptides 3 indicated the presence of an
intramolecular hydrogen bond suggesting that 3a and
3b are indeed preorganised via a �-turn. 3a and 3b were
subjected to Yb(OTf)3 catalysed Michael addition using
allylamine leading, after N-protection, to N-butoxycar-
bonyl (Boc) peptides 4a and 4b in good yields (Scheme
2).

Scheme 1. Yb(OTf)3-catalysed Michael addition of amines.
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Scheme 2. Yb(OTf)3-catalysed Michael addition of allylamine.

However, a careful analysis of the reaction mixture by
1H NMR indicated it to be a mixture (60:40) of
diastereomers meaning that the �-turn present in 3 is not
able to exert any meaningful control during Michael
addition of amines. In order to further improve the
diastereoselectivity, we synthesised peptides capable of
existing as �-turns. It is known that a �-turn preorganises
peptides into conformationally constrained, less flexible
conformations. Such preorganised �-turns in a peptide
may provide a better facial selectivity in the crotonoyl
group leading to high diastereoselectivity during
Yb(OTf)3 catalysed Michael addition of alkyl amines.

Thus the corresponding dipeptide N-crotonoyl-L-pro-
line-leucine–glycine ethyl ester 5 was synthesised accord-
ing to standard amide coupling procedures and the
existence of �- and �-turns8 in this peptide was probed
by deuterium exchange studies9 using CD3OD in CDCl3
(Scheme 3). There was no deuterium exchange for the
bonded amide proton even after 5 hours, clearly indicat-
ing the presence of strong intramolecular hydrogen
bonding in 5. When 5 was treated with allylamine or
benzylamine under Yb(OTf)3 catalysed conditions, fol-
lowed by protection, N-Boc dipeptides 6a and 6b were
obtained in good yields (Scheme 3). However the
diastereoselectivity in this reaction had improved only
marginally (70:30) indicating only a limited role for the
preorganised structure, in influencing the transition state
of the Michael addition. The peptides 4 and 6 could be
separated into pure diastereomers and in spite of the
moderate selectivity during the Michael addition, this
methodology provided an efficient route for the synthesis
of both diastereomers of �-methyl-�-alanine-L-proline-
XAA tripeptides. With allylamine at the �-amino acid
terminus in these peptides we realised that the introduc-
tion of another double bond at the other end of the
peptide would lead to a suitable precursor for ring closing
metathesis (RCM).

Thus we wanted to constrain these peptides containing
a �-methyl-�-alanine-L-proline bond, by cyclisation. The
cyclic peptides derived from such residues are attractive
compounds as pharmaceutical probes for proteases. Also
a comparative study of the acyclic as well as the
corresponding cyclic peptide may provide vital informa-
tion regarding the ‘bioactive conformation’ of such
structures.

In view of the importance of the cyclic peptides, we
undertook a systematic study on the cyclisation of these
peptides by RCM.10 Thus the dipeptides 4 were con-
verted to the corresponding allylamides 7 via routine
synthetic manipulation (Scheme 4) and the
diastereomers were separated by column chromatogra-
phy. In view of the probability that the allylamides 7
exist with a �-turn, we first explored their cyclisation
using Grubbs’ ruthenium catalyst. Surprisingly no
cyclised peptide 8 was observed with either of the
diastereomers (7a and 7b) under RCM conditions.
Molecular dynamics simulation studies showed that
allylamides 7 are organised via a conformation that
does not permit the two terminal double bonds to come
into close proximity for cyclisation (Fig. 1). Accord-
ingly, we turned our attention to the corresponding
allyl esters 9 with the premise that these may exist in a
favourable conformation (Fig. 1). Thus both the
diastereomers of 9 (9a and 9b) were separated by
column chromatography and subjected to RCM stud-
ies. Our assumption was vindicated as both 9a and 9b
underwent smooth RCM with Grubbs’ catalyst leading
to the corresponding cyclic peptides 10a and 10b,
respectively. Similarly the diastereomers 9c and 9d were
separated and subjected to RCM to afford the corre-
sponding cyclic peptides 10c and 10d, respectively. It is
noteworthy that all the diastereomers i.e. 9a–d under-
went RCM with equal ease and efficiency (Table 1).

Scheme 3. Yb(OTf)3-catalysed Michael addition of amines to peptide 5.
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Scheme 4. RCM of tripeptides 7 and 9.

Figure 1. Energy minimised structures show preference for the allyl esters 9 as compared to allyl amides 7 in RCM cyclisation.

Table 1. Ru-alkylidine catalysed RCM on the diastereomers of tripeptides 9
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Scheme 5. Assignment of the configuration of the �-amino acid in 9a. Reagents and conditions : (i) LiOH, THF:H2O, rt; (ii)
isobutyl chloroformate, Et3N, CH2N2 (excess), CH2Cl2 at 0°C; (iii) Ag(OAc), Et3N, MeOH, rt; (iv) LiOH, THF:H2O; (v) EDC,
HOBT, O-allyl-L-phenylalanine-L-proline, Et3N, CH2Cl2, 0°C to rt.

The cyclic peptides were obtained as a mixture of E and
Z isomers in which the former isomer was the major
product (E :Z=3:1).

In order to ascertain the absolute stereochemistry of the
chiral centre of the �-amino acid, we have carried out the
chemical correlation study described in Scheme 5. We
synthesised N-allyl-N-Boc-L-alanine 11 starting from
L-alanine and made the corresponding diazoketone 12 by
mixed anhydride protocols using isobutyl chloroformate
and diazomethane in dichloromethane. Arndt–Eistert
homologation on 12 using AgOAc gave �-amino ester 13,
which was hydrolysed to afford the corresponding �-
amino acid 14. Coupling the pure acid 14 with L-proline-
L-phenylalanine allyl ester yielded the pure diastereomer.
Optical rotation and HPLC studies indicated that the
compound obtained by homologation ([� ]D −31.3, c 1.15
in CHCl3) (Scheme 5) is identical with the polar
diastereomer 9a ([� ]D −37.8, c 0.65 in CHCl3) obtained
by Yb(OTf)3 catalysed Michael addition of allylamine
with 3a. Therefore the polar diastereomers of 4a and 9
were assigned the ‘S ’ absolute stereochemistry at the
chiral centre in the �-amino acid residue. Similarly the
‘S ’ assignment was made for the other polar diastereomer
9c and the corresponding cyclic peptides (i.e. 10a and
10c). The less polar diastereomers were accordingly
assigned the ‘R ’ configuration at the �-amino residue in
9b, 9d, 10b and 10d.

In conclusion, this paper describes a novel synthetic route
for �-methyl-�-alanine-L-proline derived peptides using
Yb(OTf)3 catalysed Michael addition of amines to N-
crotonoyl-L-proline or N-crotonoyl-L-proline peptides,
respectively. The facile addition of allylamine leads to the
dipeptide containing �-methyl-�-alanine-L-proline
residue which are useful precursors for cyclic peptides
obtainable by RCM.
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